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Abstract−−−−This paper deals with an application of partial least squares (PLS) methods to an industrial terephthalic
acid (TPA) manufacturing process to identify and remove the major causes of variability in the product quality.
Multivariate statistical analyses were performed to find the major causes of variability in the product quality, using
the PLS models built from historical data measured on the process and quality variables. It was found from the PLS
analyses that the variations in the catalyst concentrations and the process throughput significantly affect the product
quality, and that the quality variations are propagated from the oxidation unit to the digestion units of the TPA process.
A simulation-based approach was addressed to roughly estimate the effects of eliminating the major causes on the
product quality using the PLS models. Based on the results that considerable amounts of the variations in the product
quality could be reduced, we have proposed practical approaches for removing the major causes of product quality
variations in the TPA manufacturing process.
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INTRODUCTION

Terephthalic acid (TPA) is a monomer used to manufacture poly-
ethylene terephthalate (PET), which then is formed into films, tex-
tiles, bottles, and plastic molds. The manufacturing processes are
receiving increased attention due to steady growth in the demand
for PET in the expanding market. Several types of commercial pro-
cesses each licensed by Amoco, Eastman-Kodak, or Mitsubishi are
being operated to manufacture TPA in the world [Kroschwitz, 1991].
In all these commercial processes, p-xylene is partially oxidized by
air to TPA, where 4-carboxybenzaldehyde (4-CBA) is inevitably
formed as an undesirable by-product. The amount of the 4-CBA
contained in the TPA product mainly determines the product qual-
ity since the 4-CBA hinders stable polymerization of TPA in the
subsequent PET manufacturing process [Kim et al., 2001]. Hence,
it is desirable to minimize not only the formation of 4-CBA but also
its fluctuation in the TPA manufacturing process to keep up the uni-
formity in the PET product quality during a certain period of opera-
tion. To achieve the goal, TPA manufacturers have adopted vari-
ous process systems approaches such as modeling, optimization,
control, and statistical analysis of the process [Jaisinghani et al., 1997;
Cincotti et al., 1999].

Multivariate statistical projection methods, such as partial least
squares (PLS) methods, principal component analysis (PCA) or prin-
cipal component regression (PCR) are widely used as powerful tools
to identify the sources of quality deviations and process faults and

to model processes and product qualities in various industries. E
son et al. [1995] carried out multivariate analyses of aquatic to
ity data using a PLS method and compared its performance 
an MLR (multiple linear regression) method. MacGregor and Ko
[1995] gave an overview of these methods and applied PCA 
PLS methods to an industrial polymerization process for online m
itoring and fault diagnosis. Fujii et al. [1997] used a PLS meth
to select the important variables for empirical modeling as wel
to build the models for predicting the top composition in a distil
tion column. Recently, Hong et al. [1999] employed a PLS meth
to design a soft sensor for the prediction of toluene compositio
an industrial splitter column. They divided a data set into seve
sub-groups using a PCA clustering method to improve the pre
tion capability of the soft sensor by constructing several local P
models. Liu et al. [2000] proposed a nonlinear PLS method by
tending the conventional linear PLS method to a nonlinear fra
work and applied their PLS method to a distillation column. Mo
recently, Han and Han [2003] developed a hybrid model by co
bining a thermodynamic compression/expansion model into a P
model to predict the power consumption/generation rates of an
dustrial compression/expansion system.

In this article, we present an application of a PLS method to
industrial TPA manufacturing process to investigate the major ca
of variability in the quality (4-CBA concentration) of the TPA prod
uct. First, we present a brief overview of PLS methods and the T
manufacturing process. Then, the PLS methods are applied t
process to find the major causes of variability in the product qua
and to simulate the effects of eliminating these causes. Finally, p
tical approaches are proposed to get rid of the revealed caus
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the TPA manufacturing process.

BACKGROUND ON PARTIAL LEAST
SQUARES METHODS

Multivariate statistical projection methods are recognized as state-
of-the-art techniques for the analysis and modeling of chemical pro-
cesses, and comprise several specific methods such as PCA, PCR,
and PLS [Fujii et al., 1997; Neogi and Schlags, 1998]. Since this
study mainly relies on a PLS method, we give a brief overview of
it, referring the readers to the literature for the other methods [Wold
et al., 1987; Wise and Gallagher, 1996].

A PLS method has been widely used as a powerful tool for con-
structing empirical models from lab and field measurement data. It
typically provides more robust and reliable models than ordinary
least squares methods, particularly when the data are noisy and highly
correlated with each other [Eriksson et al., 1995; Neogi and Schlags,
1998]. The basic concept of the PLS method is to project the high
dimensional spaces of the input and output data obtained from a
process onto the low dimensional feature (latent) spaces and then
to find the best relation between the feature vectors. It is capable of
dealing with singular and highly correlated regression problems which
the traditional multiple linear regression methods cannot handle. In
addition, it enables the modeling results to be easily interpreted by
providing helpful information in the form of scores, loadings, and
regression coefficients. 

The first step in a PLS modeling is to arrange the measurements
on k process variables and quality variables at n different sampling
times into an n×k process data matrix X and an n×m output ma-
trix Y, respectively. Then, after being scaled and mean-centered, each
X and Y matrix is decomposed as a sum of series of rank-one ma-
trices according to the following outer relations:

(1)

(2)

Finally, the inner relation is described by the following equation:

(3)

In the above, T and U represent the score matrices that summ
rize X and Y variables, respectively, while P and Q the loading ma-
trices that show the influences of X and Y, respectively. The score
vectors ta are calculated sequentially from the data for each la
variable a (also called the PLS dimension) such that the linear co
nations of the X and Y variables defined by ta=Xpa and ua=Yqa

maximize the covariance between X and Y that is explained at each
latent variable. The total number of latent variables A is typica
much lower than the number of process variables k and is usu
determined by means of cross-validations [Geladi and Kowal
1986]. If one uses all the latent variables (A=k) to describe X and
Y variables, the residual matrices E and F will be zeros. The PLS
regression coefficients B in Eq. (3) are determined from the unde
lying PLS model and can be used to interpret how the process
iables X are correlated to the quality variables Y. Typically, the most
instructive method to calculate the PLS model parameters inc
ing the scores (T and U), the loadings (P and Q), and the weights (W)
is known as the nonlinear iterative partial least squares (NIPA
algorithm in which the PLS parameters are computed sequen
for each latent variable. Details on the general concepts of the 
modeling and the NIPALS algorithm are shown in the literatu
[Geladi and Kowalski, 1986].

PROCESS DESCRIPTION

A commercial process capable of processing p-xylene of about
430,000 tons per year is currently operated to manufacture TP
Korea; the name of the process is concealed not to disclose pr
etary information. Fig. 1 shows a simplified process flow diagra
of this process consisting of the major six unit processes: ox
tion, centrifuging, digestion, filtering and drying, catalyst purific
tion, and solvent separation. In the oxidation process, pressur
air directly oxidizes p-xylene to TPA and other by-products in th
presence of a combination of cobalt, manganese, and bromin

X  = TPT
 + E  = taPa

T
 + E

a = 1

A

∑

Y  = UQT
 + F = uaqa

T
 + F

a = 1

A

∑

Y  = XB  + F = XW PTW( ) − 1QT
 + F

Fig. 1. Simplified process flow diagram of the terephthalic acid manufacturing process.
November, 2003
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catalyst and acetic acid as solvent. Crude TPA is produced from
the oxidation process according to the overall reaction scheme shown
in Fig. 2. The actual reaction mechanisms are more complex than
shown in Fig. 2 and would include the generation mechanisms for
such minute products as p-toluic acid, tolualdehyde, terephthalde-
hyde, and carbon dioxide [Cincotti et al., 1999]. As can be seen in
the overall reaction, TPA is inevitably accompanied by 4-CBA, which
is the undesirable by-product whose concentration in the crude TPA
typically ranges from 3,000 and 8,000 ppm. Over 98% conversion
of p-xylene is achieved in the oxidation process where the major
controlled variables are oxidation temperature, residence time, cat-
alyst to p-xylene ratio, and so forth. A portion of the crude TPA com-
ing from the oxidation process is sold as a product after going through
the filtering and drying process while the rest is sent in a slurry state
to the centrifuging process. In the centrifuging process, catalyst liquid
is separated from the slurry and then recycled to the catalyst puri-
fication process. The crude TPA is sent along with a small amount
of catalyst from the centrifuging process to the digestion process
where 4-CBA is further oxidized to TPA by pressurized air, result-
ing in lowered concentration below 150 ppm. The major controlled
variables of the digestion process are temperature, residence time,
and air flow-rate. The filtering and drying process is responsible
for filtering solid-type impurities and for drying wet TPA to yield
final dried-powder product. The solvent separation process consist-
ing of several distillation columns serves to separate the water gener-
ated in the oxidation step from the acid-water mixture, and the re-
sulting highly concentrated acetic acid is then recycled to various
unit processes. Since heavy organic compounds generated during
oxidation contaminate the catalyst in liquid solvent, they are sepa-
rated from the catalyst solvent in the catalyst purification process
comprising several distillation columns.

MODELING AND ANALYSIS

The concentration of 4-CBA in the purified TPA (final product)
is the major quality variable in TPA manufacturing processes. Hence,
the key process variables affecting the oxidations of p-xylene and
4-CBA should be identified first to control the 4-CBA within a de-
sired level. In the TPA manufacturing process shown in Fig. 1, the
average concentration of 4-CBA over a certain period of produc-
tion is quite low enough to satisfy the PET manufacturers to whom
the purified TPA is supplied. However, the concentration of the 4-
CBA shows large variations that render the quality control difficult
in the PET manufacturing processes. In this section, the major causes
of variations in the 4-CBA concentration are identified first, and

then the effects of eliminating these causes on the variability
examined by simulating the product quality on the basis of the
rived PLS models.
1. Data Preparation and Preprocessing

The real-time database (RTDB) system and the laboratory in
mation management system (LIMS) have been running to co
the measurements on the process and quality variables for the w
process shown in Fig. 1. The RTDB system gathers over 1500 m
surements every minute on the process operating variables, an
LIMS stores the measurements on the quality variables and c
lyst concentrations which are sampled and analyzed once to 
times a day. Since the 4-CBA concentration only varies in the 
dation step, only the data measured in the oxidation and dige
processes are required for the PLS modeling and analysis. Tab
and 2 summarize the process and quality variables for the ox
tion process and for the digestion process, respectively. All the 

Fig. 2. Oxidation of p-xylene to terephthalic acid and 4-carboxy-
benzaldehyde.

Table 1. Process and quality variables used for the PLS modeling
and analysis of the oxidation process

Variable Description

V1 Solid in the slurry from the oxidation process, [wt%
V2 Bromine in the catalyst liquid into the oxidation process

[ppm]
V3 Cobalt in the catalyst liquid into the oxidation process

[ppm]
V4 Manganese in the catalyst liquid into the oxidation 

process, [ppm]
V5 Iron in the catalyst liquid into the oxidation process

[ppm]
V6 Sprayed acetic acid into the oxidation process, [kg/m
V7 Catalyst liquid into the oxidation process, [kg/min]
V8 p-xylene fed into the oxidation process, [kg/min]
V9 Acetic acid recycled into the oxidation process, [kg/min
V10 Air into the oxidation process, [kg/min]
V11 Pressure of the air into the oxidation process, [kg/cm2]
V12 Temperature of the air into the oxidation process, [
V13 Oxidizer level, [%]
V14 Oxidizer pressure, [kg/cm2]
V15 Oxidizer temperature, [C]
V16 Ratio of V7 to V8
V17 Ratio of V10 to V8
V18 Ratio of V23 to V8
V19 Level of the reflux tank, [%]
V20 Level of the catalyst liquid tank 1, [%]
V21 Level of the catalyst liquid tank 2, [%]
V22 Acetic acid into the reflux tank, [kg/min]
V23 Total crude TPA from the oxidation process, [kg/min]
V24 Crude TPA into the digestion process, [kg/min]
V25 Excess oxygen in the oxidation process, [vol%]
V26 Ratio of V24 to V23
V27 Ambient temperature, [C]
V28 Relative humidity, [%]
V29 Off-gas Absorber pressure, [kg/cm2]
Q1 4-CBA concentration in the crude TPA, [ppm]
Korean J. Chem. Eng.(Vol. 20, No. 6)
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models built here use the historical data measured during the last
10 month long operation of the TPA manufacturing process.

A problem arises here because the quality variables are measured
much less frequently than the process variables and further because
the time stamps marked on each measurement would not exactly
match between the two types of variables due to time-delays. To
resolve the problem, the original process data matrix with size n×k
is rearranged into a new matrix with size l×(k×s) by selecting s rows
located around the time stamps of the quality variables in the original
process data matrix as time-shifted variables that accounts for time-

delays [Wise and Gallagher, 1996; Dayal and MacGregor, 19
Fig. 3 depicts the arrangement of a process data matrix that acc
for time-delays as well as conforms the observations for the 
cess variables to those for the quality variables.

After the data matrices were rearranged, statistical outliers 
might appear due to measurement errors or abnormal opera
were removed from the data set on the basis of principal com
nent analysis [Wold et al., 1987]. Then, the following two data m
trices (each of which includes the observations both for the pro
variables and for the quality variable) were prepared for the P
modeling: the data matrix 1 with the size of 306 observations
206 variables (205 input variables and 1 output variable) for 
oxidation process, and the data matrix 2 with the size of 621 
servations by 163 variables (162 input variables and 1 output 
iable) for the digestion process. Performing a PLS modeling to s
an arranged data matrix is similar to identifying an ARX (Auto R
gressive eXogeneous) model; details can be found in the litera
[Wise and Gallagher, 1996; Dayal and MacGregor, 1996; Shi 
MacGregor, 2000].
2. PLS Modeling and Analysis

To identify the correlations between the 4-CBA concentratio
and the process variables including catalyst concentrations, 
models for the oxidation and digestion processes are built from
data matrix 1 and 2, respectively. After cross-validations using
data matrices are performed, the final PLS model for the oxida
process has seven latent variables and explains 62.2% of the
ance in the 4-CBA concentration of crude TPA (Q1). The PLS m
el for the digestion process needs eight latent variables with w
55.3% of the variability in the 4-CBA concentration of purified TP
(Q2) is captured. Note that the PLS modeling results are quite g
if we consider the fact that there should exist numerous sensor f
and measurement errors in the process and quality variables o
tual processes and that the PLS models attempt to explain the “
mon-cause” variations [MacGregor et al., 1994] in the process 
and to exclude the random variations and measurement errors
are uncorrelated with other process and quality variables.

Fig. 4 compares the measured 4-CBA concentrations with the
dicted ones in the crude TPA from the oxidation process. As sh
in the figure, the predicted values agree well with the measured
ues in trend, and most of the deviations from the average valu
the total observations can be predicted by the PLS model for
oxidation process. Fig. 5 compares the measured 4-CBA con
trations with the predicted ones in the purified TPA from the dig
tion process. Though the variance captured by the PLS mode
the digestion process is relatively low compared with that for 
oxidation process, the major trend (showing long-term variatio
of the measured 4-CBA concentrations is well predicted as il
trated in the figure. Since the quality variations (Q1 and Q2) fo
long operation period are rather undesirable than small fluctuat
for a short operation period, the predictions of the long-term va
tions are more important than those of the short-term variatio
Because the major trends are well predicted by using the PLS m
els as shown in Figs. 4 and 5, both the PLS models can be rel
used for analyzing the causes of variability in the 4-CBA conc
trations.

Fig. 6 shows the regression coefficients of the PLS model 
the oxidation process. The higher a bar in the figure is, the m

Table 2. Process and quality variables used for the PLS model-
ing and analysis of the digestion process

Variable Description

Q1 4-CBA concentration in the crude TPA, [ppm]
W1 Solid in the slurry from the digestion process, [wt%]
W2 Bromine in the catalyst liquid into the digestion process, 

[ppm]
W3 Cobalt in the catalyst liquid into the digestion process, 

[ppm]
W4 Manganese in the catalyst liquid into the digestion pro-

cess, [ppm]
W5 Iron in the catalyst liquid into the digestion process, [ppm]
W6 Slurry from the oxidation process to the digestion pro-

cess, [kg/min]
W7 Air into the digestion process, [kg/min]
W8 Acid vapor into the digestion process, [kg/min]
W9 Excess oxygen in the 1st digester, [vol%]
W10 Temperature of the gaseous phase in the 1st digester, [C]
W11 Inventory of the 1st digester, [ton]
W12 Pressure of the 1st digester, [kg/cm2]
W13 Temperature of the reaction zone of the 1st digester, [C]
W14 Temperature of the slurry exiting the 1st digester, [C]
W15 Slurry circulation into the 2nd digester, [kg/min]
W16 Temperature of the acid vapor into the digestion process, 

[C]
W17 Temperature of the slurry feed into the digestion process, 

[C]
W18 Temperature of the gaseous phase in the 2nd digester, 

[C]
W19 Excess oxygen in the 2nd digester, [vol%]
W20 Inventory of the 2nd digester, [ton]
W21 Pressure of the 2nd digester, [kg/cm2]
W22 Temperature of the reaction zone of the 2nd digester, [C]
W23 Slurry circulation into the slurry flash tank, [kg/min]
W24 Acetic acid into the slurry flash tank, [kg/min]
W25 Acetic acid vapor into the reflux tank, [kg/min]
W26 Acetic acid into the acetic acid tank, [kg/min]
W27 Product slurry into the product tank, [kg/min]
W28 Level of the slurry flash tank, [%]
W29 Temperature of the slurry flash tank, [C]
W30 Ambient temperature, [C]
W31 Relative humidity, [%]
Q2 4-CBA concentration in the purified TPA, [ppm]
November, 2003
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effect the corresponding variable has on the quality variable. And
the sign of a regression coefficient denotes the direction of the effect
on the quality variable. As shown in the figure, the concentrations
of the catalysts (V2 and V4) into the oxidation process are strongly
correlated to the 4-CBA concentration of crude TPA. Especially,
the manganese concentration has a positive correlation to the con-
centration of the 4-CBA in the oxidation process, but the bromine
has a strong negative correlation contrary to the manganese con-
centration. It implies that small fluctuations in the catalyst concen-
trations lead to large variability in the concentration of the 4-CBA
in the crude TPA and thus that the catalyst concentrations should
be elaborately controlled to reduce the quality variations. The pro-
cess variables (V8 and V15) associated with the process through-
put also highly affect the variability in the 4-CBA concentration of
crude TPA. Therefore, we can reach the conclusion that the variations

in the catalyst concentration and the changes in the process thro
put are the major sources of variability in the 4-CBA concentrat
of crude TPA.

Fig. 7 shows the regression coefficients of the PLS model 
the digestion process. As can be seen in the figure, the 4-CBA 
centration of crude TPA (Q1) is strongly correlated with the 4-CB
concentration of purified TPA (Q2). It means that most of the v
iations in the purified TPA quality are propagated from the oxid
tion process, and consequently that the stabilization of oxida
process is very important to reduce the variability in the 4-CB
concentration of purified TPA. In the digestion process, the cata
concentrations (W3 and W4) and the flow rate of air (W7) also
fect the 4-CBA concentration of purified TPA as shown in Fig. 7
3. Estimation of the Variability in the Product Quality

The PLS models are used to investigate the effects of the sta

Fig. 3. Arrangement of an original process data matrix into a new process data matrix; the gray-colored rows indicate the observations
for the process variables corresponding to the time stamps at which the quality variables are measured.

Fig. 4. 4-CBA concentrations of crude TPA predicted by the PLS
model for the oxidation process.

Fig. 5. 4-CBA concentrations of purified TPA predicted by the
PLS model for the digestion process.
Korean J. Chem. Eng.(Vol. 20, No. 6)
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zation of variability both in the catalyst concentrations and in the
process throughput on the variations in the 4-CBA concentrations
(Q1 and Q2). Using the PLS models for the oxidation and diges-
tion processes, the simulation results are obtained at two different
operating conditions: one is the actual condition during the period of
the data sampling, and the other is an assumed scenario in which
the catalyst concentrations (V2-4 and W2-4) and the process vari-
ables (V7-8, V10, V15-18, V23-24, V26, W6-7, W10, W13, W18,
W22, and W17) associated with the process throughput are stabi-
lized by intentionally reducing their standard deviations to halves
the actual values. In all the simulations, the concentrations of 4-CBA
(Q1) predicted by the PLS model for the oxidation process are used
as an input vector of the PLS model for the digestion process. Then,
the effect of the stabilization can be roughly estimated by compar-
ing the simulation results obtained at the two different operating
conditions under the assumption that all the process variables are
independent of each other, hence freely adjustable.

Fig. 8 compares the 4-CBA concentrations of crude TPA a
both the catalyst concentrations and the process throughput ar
bilized with those before stabilization. As shown in the figure, t
standard deviation of the 4-CBA concentrations of crude TPA c
siderably decreases by 51.5% after stabilization. Fig. 9 shows
4-CBA concentrations of purified TPA after the catalyst concen
tions and the process throughput are stabilized. After the sim
tions for the oxidation process and the digestion process are
formed in succession, the standard deviation is reduced by 36
which is rather lower than that for the crude TPA. Although the 
timated reduction in variations obtained by using the PLS mod
would differ from the actual values due to that portion of the va
ations treated as noises in the model, the simulation approach 
ented here can be taken to provide a useful evaluation of the e

Fig. 6. Regression coefficients of the 4-CBA concentration of crude
TPA (Q1) for the PLS model for the oxidation process (data
matrix 1).

Fig. 7. Regression coefficients of the 4-CBA concentration of pu-
rified TPA (Q2) for the PLS model for the digestion pro-
cess (data matrix 2).

Fig. 8. Simulated 4-CBA concentrations of crude TPA before and
after the stabilization.

Fig. 9. Simulated 4-CBA concentrations of purified TPA before
and after the stabilization.
November, 2003
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of stabilizing the major causes of variations.

PRACTICAL APPROACHES
TO PRODUCT QUALITY CONTROL

As one can see from the PLS regression coefficients and the sim-
ulation results shown in the previous section, the major causes of
variability in the 4-CBA concentrations are the fluctuations in the
catalyst concentrations and changes in the process throughput. Thus,
we have to get rid of these causes in order to achieve more uniform
concentrations of 4-CBA both in the oxidation process and in the
digestion process. In practice, to stabilize the catalyst concentra-
tions in the TPA manufacturing process, the concentrations of the
catalysts into the oxidation process should be measured online by
using a near-infrared spectroscopy. Then, a control system that uses
the measured concentrations can be devised to keep the ratio of cat-
alyst to p-xylene at a constant value in the oxidation and digestion
processes. A simple proportional-integral-derivative (PID) control
system can be adopted for adjusting the flow rate of the catalyst
liquid into the oxidation process if the only control objective is to
regulate the total catalyst to p-xylene ratio. However, to regulate
both the catalyst composition (cobalt, bromine, and manganese)
and the total catalyst to p-xylene ratio, a more sophisticated control
system such as a model predictive controller [Jaisinghani et al., 1997;
Hur et al., 2003] should be employed for the TPA manufacturing
process shown in Fig. 1.

Typically, the process throughput varies depending on the pro-
duction schedule and on a sudden or scheduled maintenance for
the unit processes. Thus, it is hard to directly reduce the variability
in the process throughput. Since a change in the process through-
put would inevitably make the 4-CBA concentrations in the oxida-
tion and digestion processes deviate from the target values, we have
to look for key process variables to adjust for the purpose of regulat-
ing the 4-CBA concentrations. Such variables should fulfill the re-
quirement that they not only have strong and consistent effect on
the 4-CBA concentrations but also be easily adjustable without vio-
lating the operating conditions. Figs. 6 and 7 can be used to screen
the candidates of the key process variables that satisfy the require-
ment. As a result, we chose the temperature of the oxidizer (V15)
as the most suitable process variable for regulating the 4-CBA in
the crude TPA in the oxidization process. For controlling the 4-CBA
in the purified TPA in the digestion process, we selected the flow
rate of the air into the digestion process (W7) and the temperature
of the 1st digester (W13).

If there is a change in the process throughput, we have to adjust
the set-point of the oxidizer temperature to prevent the 4-CBA con-
centration of crude TPA from drifting from a target value. In this
case, the following empirical relation can be used to set up a new
set-point of the temperature:

C4CBA, CTA=α1Ff+α2TOXD+α3 (4)

Similarly, the 4-CBA concentration of purified TPA can also be re-
gulated by adjusting the set-points of both the air flow rate and the
digester temperature, based on the following equation:

C4CBA, PTA=β1Ff+β2TDIG+β3FaDIG+β4 (5)

In the equations above, the model coefficients (α1, α2, α3 and β1, β2,

β3, β4) are determined by designing suitable experiments [Colem
and Montgomery, 1993; Montgomery, 2001] for the oxidation a
digestion processes. However, the determined coefficients are 
valid within the normal operating regions where the experime
are performed.

CONCLUSIONS

PLS methods were applied to an industrial TPA manufactur
process to investigate the major causes of variability in the m
quality variable (4-CBA concentration in the TPA product). Mul
variate statistical analyses were performed by using the PLS m
els built from historical data measured on the process and qu
variables in the TPA manufacturing process. The major cause
variability in the product quality were successfully found from t
PLS analyses, and the effects of eliminating these causes were 
tigated via the simulations using the derived PLS models. Prac
approaches to getting rid of the major causes, which were reve
through the PLS analyses, were proposed to design control
tems for stabilizing the catalyst concentrations and to set up oper
conditions on the basis of a simple linear equation when there
changes in the process throughput of the TPA manufacturing proc

ACKNOWLEDGMENT

This work was supported in part by the Brain Korea 21 Pro
and the Ministry of Commerce, Industry and Energy (MOICE) (gr
No. IMT2000-00015993).

NOMENCLATURE

B : k×m matrix of regression coefficients
C4CBA, CTA : 4-CBA concentration of crude TPA
C4CBA, PTA : 4-CBA concentration of purified TPA
E : n×k residual matrix for X
F : n×m residual matrix for Y
FaDIG : flow rate of the air entering the digestion process
Ff : throughput of p-xylene feed
P : k×A loading matrix for X
pa : loading vector with the size of k×1 for X in a latent variable a
Q : m×A loading matrix for Y
qa : loading vector with the size of m×1 for Y in a latent vari-

able a
T : n×A score matrix for X
TDIG : digester temperature
TOXD : oxidizer temperature
ta : score vector with the size of n×1 for X in a latent variable a
U : n×A score matrix for Y
ua : score vector with the size of n×1 for Y in a latent variable a
W : k×A matrix of weight vector
wa : vector of weights with the size of k×1 for X variables in a

latent variable a
X : matrix of process data with the size of n×k
Y : matrix of quality data with the size of n×m

Subscripts
A : total number of latent variables
Korean J. Chem. Eng.(Vol. 20, No. 6)
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sis,”
a : index of latent variable
k : number of process variables for X
l : number of sampling times for the quality variables
m : number of quality variables for Y
n : number of sampling times for X or Y
s : number of rows selected in an original data matrix for rear-

rangement to a final data matrix

Greek Letters
α1, α2, α3 : model coefficients of Eq. (4)
β1, β2, β3, β4 : model coefficients of Eq. (5)
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