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Abstract—This paper deals with an application of partial least squares (PLS) methods to an industrial terephthalic
acid (TPA) manufacturing process to identify and remove the major causes of variability in the product quality.
Multivariate statistical analyses were performed to find the major causes of variability in the product quality, using
the PLS models built from historical data measured on the process and quality variables. It was found from the PLS
analyses that the variations in the catalyst concentrations and the process throughput significantly affect the product
quality, and that the quality variations are propagated from the oxidation unit to the digestion units of the TPA process.
A simulation-based approach was addressed to roughly estimate the effects of eliminating the major causes on the
product quality using the PLS models. Based on the results that considerable amounts of the variations in the product
quality could be reduced, we have proposed practical approaches for removing the major causes of product quality
variations in the TPA manufacturing process.
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INTRODUCTION to model processes and product qualities in various industries. Eriks-
son et al. [1995] carried out multivariate analyses of aquatic toxic-
Terephthalic acid (TPA) is a monomer used to manufacture polyity data using a PLS method and compared its performance with
ethylene terephthalate (PET), which then is formed into films, tex-an MLR (multiple linear regression) method. MacGregor and Kourti
tiles, bottles, and plastic molds. The manufacturing processes af@995] gave an overview of these methods and applied PCA and
receiving increased attention due to steady growth in the demanéLS methods to an industrial polymerization process for online mon-
for PET in the expanding market. Several types of commercial proitoring and fault diagnosis. Fuijii et al. [1997] used a PLS method
cesses each licensed by Amoco, Eastman-Kodak, or Mitsubishi afe select the important variables for empirical modeling as well as
being operated to manufacture TPA in the world [Kroschwitz, 1991].to build the models for predicting the top composition in a distilla-
In all these commercial procesgegylene is partially oxidized by  tion column. Recently, Hong et al. [1999] employed a PLS method
air to TPA, where 4-carboxybenzaldehyde (4-CBA) is inevitably to design a soft sensor for the prediction of toluene composition in
formed as an undesirable by-product. The amount of the 4-CBAan industrial splitter column. They divided a data set into several
contained in the TPA product mainly determines the product qualsub-groups using a PCA clustering method to improve the predic-
ity since the 4-CBA hinders stable polymerization of TPA in the tion capability of the soft sensor by constructing several local PLS
subsequent PET manufacturing process [Kim et al., 2001]. Hencanodels. Liu et al. [2000] proposed a nonlinear PLS method by ex-
it is desirable to minimize not only the formation of 4-CBA but also tending the conventional linear PLS method to a nonlinear frame-
its fluctuation in the TPA manufacturing process to keep up the uniwork and applied their PLS method to a distillation column. More
formity in the PET product quality during a certain period of opera- recently, Han and Han [2003] developed a hybrid model by com-
tion. To achieve the goal, TPA manufacturers have adopted varibining a thermodynamic compression/expansion model into a PLS
ous process systems approaches such as modeling, optimizatiamodel to predict the power consumption/generation rates of an in-
control, and statistical analysis of the process [Jaisinghani et al., 199@dustrial compression/expansion system.
Cincotti et al., 1999]. In this article, we present an application of a PLS method to an
Multivariate statistical projection methods, such as partial leastindustrial TPA manufacturing process to investigate the major causes
squares (PLS) methods, principal component analysis (PCA) or prinef variability in the quality (4-CBA concentration) of the TPA prod-
cipal component regression (PCR) are widely used as powerful toolsct. First, we present a brief overview of PLS methods and the TPA
to identify the sources of quality deviations and process faults anananufacturing process. Then, the PLS methods are applied to the
process to find the major causes of variability in the product quality
To whom correspondence should be addressed. and to simulate the effects of eliminating these causes. Finally, prac-
E-mail: chan@postech.ac.kr tical approaches are proposed to get rid of the revealed causes in
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the TPA manufacturing process. Finally, the inner relation is described by the following equation:
_ _ T T1AT
BACKGROUND ON PARTIAL LEAST Y EXBIEEXWEIW) QTR @)
SQUARES METHODS In the above] andU represent the score matrices that summa-
rize X andY variables, respectively, whiltandQ the loading ma-
Multivariate statistical projection methods are recognized as statetrices that show the influencesXfandY, respectively. The score
of-the-art techniques for the analysis and modeling of chemical provectorst, are calculated sequentially from the data for each latent
cesses, and comprise several specific methods such as PCA, PCRyiable a (also called the PLS dimension) such that the linear combi-
and PLS [Fuijii et al., 1997; Neogi and Schlags, 1998]. Since thisations of theX andY variables defined by,=Xp, andu,=Yq,
study mainly relies on a PLS method, we give a brief overview ofmaximize the covariance betweemndY that is explained at each
it, referring the readers to the literature for the other methods [Woldatent variable. The total number of latent variables A is typically
et al., 1987; Wise and Gallagher, 1996]. much lower than the number of process variables k and is usually
A PLS method has been widely used as a powerful tool for condetermined by means of cross-validations [Geladi and Kowalski,
structing empirical models from lab and field measurement data. 11986]. If one uses all the latent variables (A=K) to desefilaad
typically provides more robust and reliable models than ordinaryY variables, the residual matridesandF will be zeros. The PLS
least squares methods, particularly when the data are noisy and highiggression coefficien8 in Eq. (3) are determined from the under-
correlated with each other [Eriksson et al., 1995; Neogi and Schlagdying PLS model and can be used to interpret how the process var-
1998]. The basic concept of the PLS method is to project the higlablesX are correlated to the quality variab¥eJypically, the most
dimensional spaces of the input and output data obtained from &structive method to calculate the PLS model parameters includ-
process onto the low dimensional feature (latent) spaces and theng the scoresl(andV), the loadingsK andQ), and the weight§/\()
to find the best relation between the feature vectors. It is capable a6 known as the nonlinear iterative partial least squares (NIPALS)
dealing with singular and highly correlated regression problems whickalgorithm in which the PLS parameters are computed sequentially
the traditional multiple linear regression methods cannot handle. Irior each latent variable. Details on the general concepts of the PLS
addition, it enables the modeling results to be easily interpreted bynodeling and the NIPALS algorithm are shown in the literature
providing helpful information in the form of scores, loadings, and [Geladi and Kowalski, 1986].
regression coefficients.

The first step in a PLS modeling is to arrange the measurements PROCESS DESCRIPTION
on k process variables and quality variables at n different sampling
times into an nxk process data maXiand an nxm output ma- A commercial process capable of procespittglene of about

trix Y, respectively. Then, after being scaled and mean-centered, eadt30,000 tons per year is currently operated to manufacture TPA in
X andY matrix is decomposed as a sum of series of rank-one maKorea; the name of the process is concealed not to disclose propri-

trices according to the following outer relations: etary information. Fig. 1 shows a simplified process flow diagram
N of this process consisting of the major six unit processes: oxida-
X=TPT+E=Yt,P+E ) tion, centrifuging, digestion, filtering and drying, catalyst purifica-
a=1

tion, and solvent separation. In the oxidation process, pressurized-

N s - ’ ;
Y =UQT+F =3 u,ql +F @) air directly OX|d|zesp->.(yle'ne to TPA and other by-products in the
& presence of a combination of cobalt, manganese, and bromine as
Water
Acetic Acid
Solvent
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Acetic Acid
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Fig. 1. Simplified process flow diagram of the terephthalic acid manufacturing process.
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Fig. 2. Oxidation of p-xylene to terephthalic acid and 4-carboxy-
benzaldehyde.
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then the effects of eliminating these causes on the variability are
examined by simulating the product quality on the basis of the de-
rived PLS models.
1. Data Preparation and Preprocessing

The real-time database (RTDB) system and the laboratory infor-
mation management system (LIMS) have been running to collect
the measurements on the process and quality variables for the whole
process shown in Fig. 1. The RTDB system gathers over 1500 mea-
surements every minute on the process operating variables, and the
LIMS stores the measurements on the quality variables and cata-
lyst concentrations which are sampled and analyzed once to eight
times a day. Since the 4-CBA concentration only varies in the oxi-

catalyst and acetic acid as solvent. Crude TPA is produced frondation step, only the data measured in the oxidation and digestion
the oxidation process according to the overall reaction scheme showgrocesses are required for the PLS modeling and analysis. Tables 1
in Fig. 2. The actual reaction mechanisms are more complex thaand 2 summarize the process and quality variables for the oxida-
shown in Fig. 2 and would include the generation mechanisms fotion process and for the digestion process, respectively. All the PLS

such minute products adoluic acid, tolualdehyde, terephthalde-
hyde, and carbon dioxide [Cincotti et al., 1999]. As can be seen in

the overall reaction, TPA is inevitably accompanied by 4-CBA, which Table 1. Process and quality variables used for the PLS modeling

is the undesirable by-product whose concentration in the crude TPA

and analysis of the oxidation process

typically ranges from 3,000 and 8,000 ppm. Over 98% conversion \iariable Description

of p-xylene is achieved in the oxidation process where the major
controlled variables are oxidation temperature, residence time, cat-
alyst top-xylene ratio, and so forth. A portion of the crude TPA com-
ing from the oxidation process is sold as a product after going through
the filtering and drying process while the rest is sent in a slurry state
to the centrifuging process. In the centrifuging process, catalyst liquid
is separated from the slurry and then recycled to the catalyst puri-
fication process. The crude TPA is sent along with a small amount
of catalyst from the centrifuging process to the digestion process
where 4-CBA is further oxidized to TPA by pressurized air, result-
ing in lowered concentration below 150 ppm. The major controlled
variables of the digestion process are temperature, residence time,
and air flow-rate. The filtering and drying process is responsible
for filtering solid-type impurities and for drying wet TPA to yield
final dried-powder product. The solvent separation process consist-
ing of several distillation columns serves to separate the water gener-
ated in the oxidation step from the acid-water mixture, and the re-
sulting highly concentrated acetic acid is then recycled to various
unit processes. Since heavy organic compounds generated during
oxidation contaminate the catalyst in liquid solvent, they are sepa-
rated from the catalyst solvent in the catalyst purification process
comprising several distillation columns.

MODELING AND ANALYSIS

The concentration of 4-CBA in the purified TPA (final product)
is the major quality variable in TPA manufacturing processes. Hence,
the key process variables affecting the oxidatiorsgfene and
4-CBA should be identified first to control the 4-CBA within a de-
sired level. In the TPA manufacturing process shown in Fig. 1, the
average concentration of 4-CBA over a certain period of produc-
tion is quite low enough to satisfy the PET manufacturers to whom
the purified TPA is supplied. However, the concentration of the 4-
CBA shows large variations that render the quality control difficult

V1 Solid in the slurry from the oxidation process, [wt%]

V2 Bromine in the catalyst liquid into the oxidation process,
[ppm]

V3 Cobalt in the catalyst liquid into the oxidation process,
[ppm]

A\ Manganese in the catalyst liquid into the oxidation
process, [ppm]

V5 Iron in the catalyst liquid into the oxidation process,
[ppm]

V6 Sprayed acetic acid into the oxidation process, [kg/min]

V7 Catalyst liquid into the oxidation process, [kg/min]

V8 p-xylene fed into the oxidation process, [kg/min]

V9 Acetic acid recycled into the oxidation process, [kg/min]

V10  Airinto the oxidation process, [kg/min]

V11 Pressure of the air into the oxidation process, [Kg/cm

V12  Temperature of the air into the oxidation process, [C]

V13  Oxidizer level, [%0]

V14  Oxidizer pressure, [kg/cin

V15  Oxidizer temperature, [C]

V16  Ratio of V7 to V8

V17  Ratio of V10 to V8

V18  Ratio of V23 to V8

V19  Level of the reflux tank, [%]

V20 Level of the catalyst liquid tank 1, [96]

V21  Level of the catalyst liquid tank 2, [%6]

V22  Acetic acid into the reflux tank, [kg/min]

V23  Total crude TPA from the oxidation process, [kg/min]

V24  Crude TPA into the digestion process, [kg/min]

V25  Excess oxygen in the oxidation process, [vol%]

V26  Ratio of V24 to V23

V27  Ambient temperature, [C]

V28  Relative humidity, [%]

in the PET manufacturing processes. In this section, the major causes V29

of variations in the 4-CBA concentration are identified first, and

Q1

Off-gas Absorber pressure, [kgfgm
4-CBA concentration in the crude TPA, [ppm]

Korean J. Chem. Eng.(Vol. 20, No. 6)



980

I.-S. Han et al.

Table 2. Process and quality variables used for the PLS model-  delays [Wise and Gallagher, 1996; Dayal and MacGregor, 1996].

ing and analysis of the digestion process Fig. 3 depicts the arrangement of a process data matrix that accounts
Variable Description for time-delays as well as conforms the observations for the pro-
o1 4-CBA concentration in the crude TPA, [opm] cess variables to thosg for the quality variables. N '
W1 Solid in the slurry from the digestion process, [wt%6] 'After the data matrices were rearranged, statistical outliers that
o o A might appear due to measurement errors or abnormal operations
w2 Bromine in the catalyst liquid into the digestion process, were removed from the data set on the basis of principal compo-
[ppm] . N L nent analysis [Wold et al., 1987]. Then, the following two data ma-
w3 Cobaltin the catalystliquid into the digestion process, trices (each of which includes the observations both for the process
[pm] . L L variables and for the quality variable) were prepared for the PLS
W4 Manganese in the catalyst liquid into the digestion pro- modeling: the data matrix 1 with the size of 306 observations by
cess_, [Ppm] o o 206 variables (205 input variables and 1 output variable) for the
WS Ironin the catalyst liquid into the digestion process, [0PM] gyiqation process, and the data matrix 2 with the size of 621 ob-
W6 Slurry from the oxidation process to the digestion pro- - senyations by 163 variables (162 input variables and 1 output var-
cess, [kg/min] iable) for the digestion process. Performing a PLS modeling to such
W7 Airinto the digestion process, [kg/min] an arranged data matrix is similar to identifying an ARX (Auto Re-
W8  Acid vapor into the digestion process, [kg/min] gressive eXogeneous) model; details can be found in the literature
W9 Excess oxygen in the 1st digester, [vol%] [Wise and Gallagher, 1996; Dayal and MacGregor, 1996; Shi and
W10  Temperature of the gaseous phase in the 1st digester, [(MacGregor, 2000].
W11 Inventory of the 1st digester, [ton] 2. PLS Modeling and Analysis
W12  Pressure of the 1st digester, [kgfcm To identify the correlations between the 4-CBA concentrations
W13  Temperature of the reaction zone of the 1st digester, [Cland the process variables including catalyst concentrations, PLS
W14  Temperature of the slurry exiting the 1st digester, [C] models for the oxidation and digestion processes are built from the
W15  Slurry circulation into the 2nd digester, [kg/min] data matrix 1 and 2, respectively. After cross-validations using the
W16 Temperature of the acid vapor into the digestion process,data matrices are performed, the final PLS model for the oxidation
[C] process has seven latent variables and explains 62.2% of the vari-
W17  Temperature of the slurry feed into the digestion process,ance in the 4-CBA concentration of crude TPA (Q1). The PLS mod-
[C] el for the digestion process needs eight latent variables with which
W18  Temperature of the gaseous phase in the 2nd digestero°-3% of the variability in the 4-CBA concentration of purified TPA
[C] (Q2) is captured. Note that the PLS modeling results are quite good
W19  Excess oxygen in the 2nd digester, [vol%] if we consider the fact that'there should exist numerous sensor faults
W20  Inventory of the 2nd digester, [ton] and measurement errors in the process and quality vangbles of ac-
W21  Pressure of the 2nd digester, [kglem tual process”es qno! that the PLS models attempt 'to explain the “com-
W22  Temperature of the reaction zone of the 2nd digester, [Cf‘non-cause variations [MacGregqr etal.,, 1994] in the process data
. I . and to exclude the random variations and measurement errors that
W23 Slurry circulation into the slurty flash tank, [kg/min] are uncorrelated with other process and quality variables.
w;g ﬁzz:g Zz:g :/n;g;:]?ntscl)utrhz frlng:xt?:rll(l,( [IEI?g/]r/nrrlwrlg] Fig. 4 compares the measured 4-CBA concentrations with the pre-
R N ' . dicted ones in the crude TPA from the oxidation process. As shown
W26 Acetic acid '”‘9 the acetic acid tank, [kg/ m_|n] in the figure, the predicted values agree well with the measured val-
W27 Product slurry into the product tank, [kg/min] ues in trend, and most of the deviations from the average value of
W28  Level of the slurry flash tank, [%] the total observations can be predicted by the PLS model for the
W29  Temperature of the slurry flash tank, [C] oxidation process. Fig. 5 compares the measured 4-CBA concen-
W30  Ambient temperature, [C] trations with the predicted ones in the purified TPA from the diges-
W31  Relative humidity, [%] tion process. Though the variance captured by the PLS model for
Q2 4-CBA concentration in the purified TPA, [ppm] the digestion process is relatively low compared with that for the

oxidation process, the major trend (showing long-term variations)
of the measured 4-CBA concentrations is well predicted as illus-

models built here use the historical data measured during the lasitated in the figure. Since the quality variations (Q1 and Q2) for a
10 month long operation of the TPA manufacturing process. long operation period are rather undesirable than small fluctuations
A problem arises here because the quality variables are measuréat a short operation period, the predictions of the long-term varia-
much less frequently than the process variables and further becautiens are more important than those of the short-term variations.
the time stamps marked on each measurement would not exactBecause the major trends are well predicted by using the PLS mod-
match between the two types of variables due to time-delays. Tels as shown in Figs. 4 and 5, both the PLS models can be reliably
resolve the problem, the original process data matrix with size nxkised for analyzing the causes of variability in the 4-CBA concen-
is rearranged into a new matrix with dizékxs) by selecting s rows  trations.
located around the time stamps of the quality variables in the original Fig. 6 shows the regression coefficients of the PLS model for
process data matrix as time-shifted variables that accounts for timehe oxidation process. The higher a bar in the figure is, the more
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Fig. 3. Arrangement of an original process data matrix into a new process data matrix; the gray-colored rows indicate the obséinres
for the process variables corresponding to the time stamps at which the quality variables are measured.

Scaled 4-CBA Concentration
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Scaled 4-CBA Concentration

Measured
Predicted
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Observation Number Observation Number

Fig. 4. 4-CBA concentrations of crude TPA predicted by the PLS
model for the oxidation process.

Fig. 5. 4-CBA concentrations of purified TPA predicted by the
PLS model for the digestion process.

effect the corresponding variable has on the quality variable. Andn the catalyst concentration and the changes in the process through-
the sign of a regression coefficient denotes the direction of the effeqiut are the major sources of variability in the 4-CBA concentration
on the quality variable. As shown in the figure, the concentrationsof crude TPA.

of the catalysts (V2 and V4) into the oxidation process are strongly Fig. 7 shows the regression coefficients of the PLS model for
correlated to the 4-CBA concentration of crude TPA. Especially,the digestion process. As can be seen in the figure, the 4-CBA con-
the manganese concentration has a positive correlation to the corentration of crude TPA (QL1) is strongly correlated with the 4-CBA
centration of the 4-CBA in the oxidation process, but the bromineconcentration of purified TPA (Q2). It means that most of the var-
has a strong negative correlation contrary to the manganese coiations in the purified TPA quality are propagated from the oxida-
centration. It implies that small fluctuations in the catalyst concen-tion process, and consequently that the stabilization of oxidation
trations lead to large variability in the concentration of the 4-CBA process is very important to reduce the variability in the 4-CBA
in the crude TPA and thus that the catalyst concentrations shouldoncentration of purified TPA. In the digestion process, the catalyst
be elaborately controlled to reduce the quality variations. The proconcentrations (W3 and W4) and the flow rate of air (W7) also af-
cess variables (V8 and V15) associated with the process througffect the 4-CBA concentration of purified TPA as shown in Fig. 7.
put also highly affect the variability in the 4-CBA concentration of 3. Estimation of the Variability in the Product Quality

crude TPA. Therefore, we can reach the conclusion that the variations The PLS models are used to investigate the effects of the stabili-
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Fig. 9. Simulated 4-CBA concentrations of purified TPA before
zation of variability both in the catalyst concentrations and in the and after the stabilization.

process throughput on the variations in the 4-CBA concentrations

(Q1 and Q2). Using the PLS models for the oxidation and diges-

tion processes, the simulation results are obtained at two different Fig. 8 compares the 4-CBA concentrations of crude TPA after
operating conditions: one is the actual condition during the period oboth the catalyst concentrations and the process throughput are sta-
the data sampling, and the other is an assumed scenario in whiddilized with those before stabilization. As shown in the figure, the
the catalyst concentrations (V2-4 and W2-4) and the process varstandard deviation of the 4-CBA concentrations of crude TPA con-
ables (V7-8, V10, V15-18, V23-24, V26, W6-7, W10, W13, W18, siderably decreases by 51.5% after stabilization. Fig. 9 shows the
W22, and W17) associated with the process throughput are stab#+~CBA concentrations of purified TPA after the catalyst concentra-
lized by intentionally reducing their standard deviations to halvestions and the process throughput are stabilized. After the simula-
the actual values. In all the simulations, the concentrations of 4-CBAions for the oxidation process and the digestion process are per-
(Q1) predicted by the PLS model for the oxidation process are usefibrmed in succession, the standard deviation is reduced by 36.6%,
as an input vector of the PLS model for the digestion process. Themyhich is rather lower than that for the crude TPA. Although the es-
the effect of the stabilization can be roughly estimated by compartimated reduction in variations obtained by using the PLS models
ing the simulation results obtained at the two different operatingwould differ from the actual values due to that portion of the vari-
conditions under the assumption that all the process variables amtions treated as noises in the model, the simulation approach pres-
independent of each other, hence freely adjustable. ented here can be taken to provide a useful evaluation of the effect
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of stabilizing the major causes of variations. B, B)) are determined by designing suitable experiments [Coleman
and Montgomery, 1993; Montgomery, 2001] for the oxidation and
digestion processes. However, the determined coefficients are only
valid within the normal operating regions where the experiments
are performed.
As one can see from the PLS regression coefficients and the sim-
ulation results shown in the previous section, the major causes of
variability in the 4-CBA concentrations are the fluctuations in the
catalyst concentrations and changes in the process throughput. Thus,PLS methods were applied to an industrial TPA manufacturing
we have to get rid of these causes in order to achieve more uniforprocess to investigate the major causes of variability in the major
concentrations of 4-CBA both in the oxidation process and in thequality variable (4-CBA concentration in the TPA product). Multi-
digestion process. In practice, to stabilize the catalyst concentrarariate statistical analyses were performed by using the PLS mod-
tions in the TPA manufacturing process, the concentrations of thels built from historical data measured on the process and quality
catalysts into the oxidation process should be measured online byariables in the TPA manufacturing process. The major causes of
using a near-infrared spectroscopy. Then, a control system that useariability in the product quality were successfully found from the
the measured concentrations can be devised to keep the ratio of cBES analyses, and the effects of eliminating these causes were inves-
alyst top-xylene at a constant value in the oxidation and digestiontigated via the simulations using the derived PLS models. Practical
processes. A simple proportional-integral-derivative (PID) controlapproaches to getting rid of the major causes, which were revealed
system can be adopted for adjusting the flow rate of the catalyghrough the PLS analyses, were proposed to design control sys-
liquid into the oxidation process if the only control objective is to tems for stabilizing the catalyst concentrations and to set up operating
regulate the total catalyst exylene ratio. However, to regulate conditions on the basis of a simple linear equation when there are
both the catalyst composition (cobalt, bromine, and manganese)hanges in the process throughput of the TPA manufacturing process.
and the total catalyst fexylene ratio, a more sophisticated control
system such as a model predictive controller [Jaisinghani et al., 1997;
Hur et al., 2003] should be employed for the TPA manufacturing
process shown in Fig. 1. This work was supported in part by the Brain Korea 21 Project
Typically, the process throughput varies depending on the proand the Ministry of Commerce, Industry and Energy (MOICE) (grant
duction schedule and on a sudden or scheduled maintenance filo. IMT2000-00015993).
the unit processes. Thus, it is hard to directly reduce the variability
in the process throughput. Since a change in the process through-
put would inevitably make the 4-CBA concentrations in the oxida-
tion and digestion processes deviate from the target values, we ha®  : kxm matrix of regression coefficients
to look for key process variables to adjust for the purpose of regulatC,g, ra : 4-CBA concentration of crude TPA
ing the 4-CBA concentrations. Such variables should fulfill the re- C g, p1a: 4-CBA concentration of purified TPA
guirement that they not only have strong and consistent effect ofe ~ : nxk residual matrix fok

PRACTICAL APPROACHES
TO PRODUCT QUALITY CONTROL

CONCLUSIONS
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the 4-CBA concentrations but also be easily adjustable without vio+
lating the operating conditions. Figs. 6 and 7 can be used to scredf,q
the candidates of the key process variables that satisfy the requiré;
ment. As a result, we chose the temperature of the oxidizer (V15
as the most suitable process variable for regulating the 4-CBA imp,
the crude TPA in the oxidization process. For controlling the 4-CBAQ
in the purified TPA in the digestion process, we selected the flowg,
rate of the air into the digestion process (W7) and the temperature
of the 1st digester (W13). T

If there is a change in the process throughput, we have to adjudt, s
the set-point of the oxidizer temperature to prevent the 4-CBA con-Tqyp
centration of crude TPA from drifting from a target value. In this t,
case, the following empirical relation can be used to set up a new

set-point of the temperature: u,
W
Cucencra=0iF+ 0T ot 0 @ W

a

Similarly, the 4-CBA concentration of purified TPA can also be re-
gulated by adjusting the set-points of both the air flow rate and theX
digester temperature, based on the following equation: Y

C4CBA PTA:ﬁlFf-'-ﬁZTDIG +ﬁ3FaDIG+ﬁ4 (5)
In the equations above, the model coefficiemisd,, a; andg,, 3, A

: nxm residual matrix foy

: flow rate of the air entering the digestion process

: throughput of-xylene feed

: kxA loading matrix forX

: loading vector with the size of kx1 férin a latent variable a
: mxA loading matrix fory

: loading vector with the size of mx1 fgrin a latent vari-

able a

: nxA score matrix foX

. digester temperature

: oxidizer temperature

: score vector with the size of nx1 ¥iin a latent variable a
: nxA score matrix foly

: score vector with the size of nx1 Tin a latent variable a
. kxA matrix of weight vector

. vector of weights with the size of kx 1 férvariables in a

latent variable a

: matrix of process data with the size of nxk
: matrix of quality data with the size of nxm

Subscripts
: total number of latent variables

Korean J. Chem. Eng.(Vol. 20, No. 6)



984 I.-S. Han et al.

a : index of latent variable Hong, S. J., Hua, C. K. and Han, C., “Local Composition Soft Sensor
k : number of process variables ¥r in a Distillation Column using PLSAWAHAK KONGHAK37,
I : number of sampling times for the quality variables 445 (1999).
m  : number of quality variables fof Hur, S. M., Park, M. J. and Rhee, H. K., “Polymer Property Control in
n : number of sampling times i or Y a Continuous Styrene Polymerization Reactor Using Model-on-De-
S : number of rows selected in an original data matrix for rear- mand Predictive ControlleKorean J. Chem. Eng0, 14 (2003).

rangement to a final data matrix Jaisinghani, R., Sims, R. and Lamshing, W., “APC Improves TA/PTA

Plant Profits;Hydrocarbon Processin@ct., 99 (1997).
Greek Letters Kim, J. Y., Kim, H. Y. and Yeo, Y. K., “ldentification of Kinetics of Di-
a,, a,, a; : model coefficients of Eq. (4) rect Esterification Reactions for PET Synthesis Based on a Genetic
B, B, Bs, B, : model coefficients of Eq. (5) Algorithm; Korean J. Chem. Engl8, 432 (2001).
Kroschwitz, J. I.,"Encyclopedia of Chemical Technology, John Wiley
REFERENCES & Sons, New York, USA (1991).

Liu, J., Min, K., Han, C. and Chang, K. S., “Robust Nonlinear PLS Based
Cincotti, A., Orru, R. and Cao, G., “Kinetics and Related Engineering  on Neural Networks and Application to Composition Estimator for

Aspects of Catalyst Liquid-Phase Oxidatiop-ofylene to Tereph- High-Purity Distillation ColumsKorean J. Chem. Endl7, 184
thalic Acid; Catalyst Todayb2, 331 (1999). (2000).

Coleman, D. E. and Montgomery, D. C., “A Systematic Approach to MacGregor, J. F., Jaeckle, C., Kiparissides, C. and Koutoudi, M., “Pro-
Planning for a Designed Industrial Experiméi@thnometrigs35, cess Monitoring and Diagnosis by Multiblock PLS Methad€hE
1 (1993). J. 40, 826 (1994).

Dayal, B. S. and MacGregor, J. F., “Identification of Finite Impulse Re- MacGregor, J. F. and Kourti, T., “Statistical Process Control of Multi-
sponse Models: Methods and Robustness IsgugsZng. Chem. variate Processe§jontrol Eng. Practicg3, 403 (1995).
Res, 35, 4078 (1996). Montgomery, D. C., “Introduction to Statistical Quality Control; John

Eriksson, L., Hermens, J. L. M., Johansson, E., Verhaar, H.J. M. and Wiley & Sons, New York (2001)

Wold, S., “Multivariate Analysis of Aquatic Toxicity Data with PLS;  Neogi, D. and Schlags, C. E., “Multivariate Statistical Analysis of an
Aquatic Science$§7, 217 (1995). Emulsion Batch Proceskjd. Eng. Chem. Rg87, 3971 (1998).

Fuijii, H., Lakshminarayanan, S. and Shah, S. L., “Application of the Shi, R. and MacGregor, J. F., “Modeling of Dynamic Systems using
PLS Technique to the Estimation of Distillation Tower Top Compo-  Latent Variable and Subspace MethatiSCThemometricd4, 423
sition; Preprint of IFAC Symposium on Advanced Control of Chem-  (2000).
ical Processes, 529 (1997). Wise, B. M. and Gallagher, N. B., “The Process Chemometrics Ap-

Geladi, P. and Kowalski, B. R., "Partial Least-Squares Regression: A proach to Process Monitoring and Fault DetectibriProc. Cont
Tutorial; Analytica Chimica Actal85 1 (1986). 6, 329 (1996).

Han, 1.-S. and Han, C., “Modeling of Multistage Air-Compression Sys- Wold, S., Esbensen, K. and Geladi, P., “Principal Component Analysis;
tems in Chemical Processé®]. Eng. Chem. Red2 2209 (2003). Chemometrics and Intelligent Laboratory Syste&tn37 (1987).

November, 2003



	Application of Partial Least Squares Methods to a Terephthalic Acid Manufacturing Process for Pro...
	In-Su Han, Minjin Kim, Chang-Hyun Lee*, Woonou Cha*, Byoung-Kyoung Ham**, Jy-Hyo Jeong**, Haksoo ...
	Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbu...
	Abstract�-�This paper deals with an application of partial least squares (PLS) methods to an indu...
	Key words:�Terephthalic Acid, Partial Least Squares (PLS), Quality Control, Empirical Modeling, M...
	INTRODUCTION
	BACKGROUND ON PARTIAL LEAST SQUARES METHODS
	PROCESS DESCRIPTION
	MODELING AND ANALYSIS
	PRACTICAL APPROACHES TO PRODUCT QUALITY CONTROL
	CONCLUSIONS
	ACKNOWLEDGMENT
	NOMENCLATURE
	REFERENCES






